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Abstract. We examine the quantitative assessment of the association between two
spatial sequences to evaluate the performance between different spatial interpolators.
In the context of natural resources this problem is relevant in several different fields.
For example, in precision farming and forest productivity it is of interest to study the
performance of interpolators in the generation of digital elevation models. In this
work the codispersion coefficient is considered for intrinsic stationary spatial pro-
cesses. Recent asymptotic results allow the construction of hypothesis testing and
confidence intervals for the coefficient. To illustrate the applicability of the coeffi-
cient, a real data example was considered in the context of digital elevation models,
in a study area located in a micro-basin in the south of Chile. Three surfaces gen-
erated by kriging, spline and inverse distance weighted (IDW) were evaluated using
the conventional approach based on the root mean square error. Since this approach
does not consider the spatial dependence present in the data, the codispersion coeffi-
cient was computed to compare all possible pairs of interpolations. The results show
that the codispersion coefficient captures spatial association that is not possible to
obtain using the conventional methods.

1 NOTATION AND DEFINITIONS

The association between two spatial processes has been extensively studied in spatial
statistics. Several coefficients of association have been proposed to summarized in a sin-
gle number the association characteristics of two spatial or temporal sequences. In a
nonparametric context Tjøtheim [15] introduced a coefficient for spatial variables. Sub-
sequently Clifford et. al, [5], [7] proposed a coefficient that is a corrected version of the
correlation coefficient. That measure was generalized later by Richardson and Clifford
[12]. As a result, tests of spatial association based on the correlation coefficient have been
implemented (see also [10]).

The codispersion coefficient was first introduced by Matheron [11] to study the spa-
tial association between two spatial sequences. This coefficient is defined as a normalized
version of the cross-variogram between two spatial variables at distance lag h. Thus it
can be interpreted as a measure of the dependence of the spatial structure of different
variables. The codispersion coefficient can also be interpreted as a linear correlation co-
efficient between spatial increments of both atributes (Goovaerts, [8]). This coefficient
has been applied in several different fields such as soil sciences [8], time series [4], hy-
drology [1], biology [2] among others.

Definition 1. Consider two weakly stationary processes, X and Y , defined on D ⊂ Zd.



The cross-variogram between X and Y is defined as

γ(h) = E[X(s + h)−X(s)][Y (s + h)− Y (s)], (1)

such that s, s + h ∈ D.

Definition 2. The codispersion coefficient is a normalized version of (1) given by

ρ(h) =
γ(h)√

VX(h)VY (h)
, (2)

where VX(h) = E[(X(s + h)−X(s))2].

This coefficient has been derived for several different types of parametric models, for
example, for MA(∞), AR(1) and first order spatial AR models explicit expressions for
ρ(h) can be found in Rukhin and Vallejos [13].

In a one-dimensional case, this coefficient can be interpreted as a comovement coef-
ficient for two time series [16]. It is related to the mean squared successive difference∑n−1

i=1 (xi+1 − xi)
2/(n − 1), that was studied by Von Neumann in the forties. Its exact

distribution has been derived [9] and its variance in the i.i.d. normal case is 4σ4(3n −
4)/(n − 1)2. The ratio of the mean squared successive difference statistic to the sample
variance

∑n−1
i=1 (xi+1 − xi)

2/
∑n

i=1(xi − x)2 is known variously as the Von Neumann ra-
tio, or the Durbin-Watson statistic in the context of regression. It is used as a test statistic
for the independence of Gaussian observations, or as a test for independence versus the
alternative of nonzero first order autocorrelation.

2 ASYMPTOTIC RESULTS

For Z(s) = (X(s), Y (s))T , assume that

Z(s1 + h1, s2 + h2)− Z(s1, s2) =
∞∑

k=−∞

∞∑
l=−∞

A(k, l)ε(s1 − k, s2 − l), (3)

where A(k, l) = Ah(k, l) are 2× 2 matrices defined for all integer k and l, such that

∞∑
k=−∞

∞∑
l=−∞

||A(k, l)||2 < ∞.

Here || · || denotes any matrix norm, and two-dimensional random vectors ε(t) are inde-
pendent with mean 0 and the covariance matrix Σ. Condition (3) is desirable to guarantee
consistency and asymptotic normality of the sample codispersion coefficient.

We define K = E[Z(s+h)−Z(s)][Z(s+h)−Z(s)]T as the covariance matrix of the
vector process for which (3) holds. Then the codispersion coefficient can be computed
using the elements of K as

ρ(h) =
κ12√
κ11κ22

,

where for i, j = 1, 2, κij denote elements of K.



Assume now that both processes can be observed on the increasing part of the positive
lattice {0 ≤ s1 < M, 0 ≤ s2 < M}, and suppose normality of the error vectors ε(t) =
(ε1(t), ε2(t))

T in (3), although the main results hold for other distributions with four first
moments. For the sample version of the codispersion coefficient given by

ρ̂(h) =

∑
0≤si<M−hi

(X(s1 + h1, s2 + h2)−X(s1, s2))(Y (s1 + h1, s2 + h2)− Y (s1, s2))√∑
(X(s1 + h1, s2 + h2)−X(s1, s2))2

∑
(Y (s1 + h1, s2 + h2)− Y (s1, s2))2

,

asymptotically we have M [ρ̂ (h)− ρ(h)]
L−→ N (0, v2), where

v2
h =

ϕ1122

κ11κ22

+
κ2

12ϕ1111

4κ3
11κ22

+
κ2

12ϕ2222

4κ11κ3
22

− κ12ϕ1112

κ2
11κ22

− κ12ϕ1222

κ11κ2
22

+
κ2

12ϕ1212

2κ2
11κ

2
22

, (4)

are the entries of 4× 4 matrix Φ defined as

Φ = E
[
(Z(s + h)− Z(s))(Z(s + h)− Z(s))T −K

]
⊗

[
(Z(s + h)− Z(s))(Z(s + h)− Z(s))T −K

]
.

where ⊗ represent the Kronecker product between two matrices.

3 AN APPLICATION: EVALUATION OF THE PERFORMANCE OF SPA-
TIAL INTERPOLATORS

3.1 Data Description

The study area, covering an area of 3011.8 ha, is located in the “escuadrón” sector, south
of Concepción in the southern portion of Chile (36o54′, 73o54′) and belongs to the Fore-
stal Mininco S.A. company. The general geomorphology of the site corresponds to a
range of coastal mountains (Cordillera de la Costa) that has mainly an abrupt topography
and an elevation reaching 500 m.a.s.l. The landscape is dominated by steep short-length
topographic profiles [17].

Since in practice it is difficult to have a continuous representation of the terrain in the
study area a Digital Elevation Model (DEM) was produced, applying kriging, spline and
IDW interpolation methods [3], [6] to points located on 10-meter topographic contour
lines, thereby producing a root mean square error (RMSE) for an elevation of 2.86 m,
3.08 m and 3.94 m respectively. The 271 × 155 images produced by these interpolation
methods are shown in Figure 1 (a), (b) and (c).

3.2 Results

First notice that kriging was the best predictor, spline the second and IDW the worse
one in terms of RMSE. However, the approach that considers the RMSE as a measure
of discrepancy, does not consider the spatial dependence present in the data. Second, the
codispersion coefficient was computed to compare all possible pairs of interpolations e.g.,
kriging versus spline. In all cases ρ(h) was evaluated for h1, h2 = 1, . . . , 20 (see Figure
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Figure 1: (a)Surface generated using kriging; ; (b) Surface generated using spline; (c)
Surface generated using the IDW method;(d) ρ(h) between kriging and IDW; (e) ρ(h)
between kriging and spline; (f) ρ(h) between IDW and spline.



1 (d), (e) and (f)). The highest values for the codispersion coefficient were observed for
kriging versus spline (0.88-1.00). A circular pattern of the codispersion coefficient for a
fixed lag distance was also observed in all comparisons. In all cases the association at a
large scale was bigger than spatial association at a small scale. The coefficient turns out
to be constant for lag distances bigger than 400 meters. This distance is related with the
mean distance between the highest and lowest point in the micro-basine. The codispersion
coefficient captures spatial association that is not possible to obtain using the conventional
methods.

4 CONCLUSIONS AND FUTURE WORK

In this paper we have discussed an application of the codispersion coefficient in the con-
text of evaluation of spatial interpolators. The coefficient provides useful information
about the spatial association between two processes. The construction of confidence in-
tervals for ρ(h) requires to fit suitable models to each image shown in Figure 1 (a), (b)
and (c). Clearly, in this case one single spatial AR model will not be appropriate for any
of these images since there are several textures that will not be captured by a single spa-
tial AR model. One way to deal with these kind of image is to preprocess each image to
produce K regions in which the process is homogeneous. Then a spatial AR model can
be fitted to each category. Finally, an hypothesis test can be implemented for the resulting
vector of codispersion coefficients between the same category for processes X and Y. The
development of such a test is a matter of current research.

When the models involve a large number of parameters, the derivation of the asymp-
totic variance of the sample codispersion coefficient is difficult. Resampling techniques
for spatial dependent variables seem adequate to obtain estimations for the variance of
the coefficient. For instance, Sherman [14] developed a method to deal with the vari-
ance estimation for statistics computed from spatial lattice data. We are in the process
of implementing Sherman’s technique for the codispersion coefficient. We view the work
described in this paper as only the beginning of a large project with several open problems
to be tackle in the future.
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