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Valparáıso 2340000, Chile

E-mail: ronny.vallejos@usm.cl

Moreno, Consuelo
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INTRODUCTION

Approaches to spatial analysis have developed considerably in recent decades. In particular, the

problem of determining sample size has been studied in many different contexts. In spatial statistics,

it is well known that as spatial autocorrelation latent in geo-referenced data increases, the amount of

duplicated information contained in these data also increases. This property has many implications

for the posterior analysis of spatial data. For example, Clifford, Richardson and Hémon (1989) used

the notion of effective degrees of freedom to denote the equivalent number of degrees of freedom

for spatially independent observations. Similarly, Cressie (1993, p. 14-15) illustrated the effect of

spatial correlation on the variance of the sample mean using an AR(1) correlation structure with

spatial data. As a result, the new sample size (the effective sample size) could be interpreted as the

equivalent number of independent observations.

This paper addresses the following problem: if we have n data points, what is the effective sample

size (ESS) associated with these points? If the observations are independent and a regional mean is

being estimated, given a suitable definition, the answer is n. Intuitively speaking, when perfect positive

spatial autocorrelation prevails, ESS = 1. With dependence, the answer should be something less than

n. Getis and Ord (2000) studied this kind of reduction of information in the context of multiple testing

of local indices of spatial autocorrelation. Note that the general approach to addressing the question

above does not depend on the data values. However, it does depend on the spatial locations of the

points on the range for the spatial process. It also depends on the spatial dimension. In this article, we

suggest a definition of effective spatial sample size. Our definition can be explored analytically given

certain special assumptions. We conduct this sort of exploration for patterned correlation matrices

that commonly arise in spatial statistics (considering a single mean process with intra-class correlation,

a single mean process with an AR(1) correlation structure, and CAR and SAR processes). Theoretical

results and examples are presented that illustrate the features of the proposed measure for effective

sample size. Finally, we outline some strands of research to be addressed in future studies.

PRELIMINARIES AND NOTATION

Consider a set of n locations in an r-dimensional space, e.g., s1, s2, . . . , sn ∈ D ⊂ Rr, such

that the covariance matrix of the variables Y (s1), Y (s2), · · · , Y (sn) is Σ. The effective sample

size can be characterized by the correlation matrix Rn = (σij)/(σiiσjj) = A−1ΣA−1, where A =

diag(σ
1/2
11 , σ

1/2
22 , · · · , σ

1/2
nn ). For example, there are many reductions of Rn to a single number and many

appropriate but arbitrary transformations of that number to the interval [1, n]. Our goal is to find a

function ESS = ESS(n,Rn, r) that satisfies 1 ≤ ESS ≤ n.
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For the case in which A = I, one illustrative reduction is provided by the Kullback-Leibler

distance from N(µ1, R) to N(µ1, I) where 1 is a n-dimensional column vector of ones. Straight-

forward calculations indicate that KL = 1
2

(
log|R|+ tr(R−1 − I)

)
. For an isotropic spatial process

with spatial variance σ2 and an exponential correlation function ρ(si − sj) = exp(−φ||si − sj ||),
φ > 0, KL needs to be inversely scaled to [1, n] and decreases in φ. Another way to avoid making an

arbitrary choice of transformation is to use the relative efficiency of Y , the sample mean, to estimate

the constant mean µ under the process compared with estimating µ under independence. Scaling by

n readily indicates this quantity to be

(1) n2(1tRn1)−1.

At φ = 0, the expression (1) equals 1, and as φ increases to ∞, (1) increases to n. (1) is attractive in

that it assumes no distributional model for the process. The existence of V ar(Y ) is implied by the

assumption of an isotropic correlation function. A negative feature of this process, however, is that

for a fixed φ, the effective sample size need not increase in n.

Creating an alternative to the previous suggestions regarding effective sample size, Griffith (2005)

suggested a measure of the size of a geographic sample based on a model with a constant mean given

by Y (s) = µ1 + e(s) = µ1 + Σ−1/2e∗(s), where Y (s) = (Y (s1), Y (s2), . . . , Y (sn)), e(s) and e∗(s),

respectively, denote n × 1 vectors of spatially autocorrelated and unautocorrelated errors such that

V ar(e(s)) = σ2e∗Σ−1 and V ar(e∗(s)) = σ2e∗In. This measure is

(2) n∗ = tr(Σ−1)n/(1tΣ−11),

where tr denotes the trace operator. Later, Griffith (2008) used this measure (2) with soil samples

collected from across Syracuse, NY.

In another alternative reduction, one can compare the reciprocal of the variance of the BLUE un-

biased estimator of µ under Rn, which is readily shown to be 1tR−1
n 1. As φ increases to∞, this quantity

increases to n. Again, no distributional model for the process is assumed. However, this expression

does arises as the Fisher information about µ under normality. In fact, for Y (s) ∼ N(µ1, σ2Rn),

I(µ) = 1tR−1
n 1/σ2, yielding the following definition.

Definition 1. Let Y (s) be a n×1 random vector with expected value µ1 and correlation matrix Rn.

The quantity

(3) ESS = ESS(n,Rn, r) = 1tR−1
n 1

is called the effective sample size.

Remark 1. Hining (1990, p. 163) pointed out that spatial dependency implies a loss of information

in the estimation of the mean. One way to quantify that loss is through (3). Moreover, the asymptotic

variance of the generalized least squares estimator of µ is 1/ESS.

Remark 2. The definition of effective sample size can be generalized if we consider the Fisher infor-

mation for other multivariate distributions. In fact, consider a spatial elliptical random vector Y (s)

with density function

fY (s) =
cn

|Σ|
1
2

gn((Y (s)− µ1)tΣ−1(Y (s)− µ1)),

where µ1 and Σ are the location and scale parameters, gn is a positive function, and cn is a normalizing

constant. If the generating function gn(u) = exp(−|u|), u ∈ R the distribution is known as the Laplace

distribution, and when Σ is known, the Fisher information is

I(µ) = E
[
4(Y (s)tΣ−11− µ1tΣ−11)2

]
= 41tΣ−11.
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Remark 3. If the n observations are independent and Rn = I, then ESS = n. If perfect positive

spatial correlation prevails, then Rn = 11t. Thus, rank(Rn) = 1, and ESS = 1.

Example 1. Let us consider the intra-class correlation structure with Y (s) ∼ (µ1, Rn), where Rn =

(1−ρ)I+ρJ , J is an n×n unit matrix, and −1/(n−1) < ρ < 1. Then ESSI = n/(1+(n−1)ρ). Notice

from Figure 1 (a) that the reduction that takes place in this case is quite severe. For example, for

n = 100 and ρ = 0.1, ESS = 9.17, and for n = 100 and ρ = 0.5, ESS = 1.98. In general, such noticeable

reductions in sample size are not expected. However, the intra-class correlation does not take into

account the spatial association between the observations. With more rich correlation structures, the

effective sample size is better at reducing the information from R.

Figure 1.

(a) ESS for the intra-class correlation; (b) ESS for the a Toeplitz correlation.
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Example 2. In the case of a Toeplitz correlation matrix, consider the vector Y (s) with the mean µ1

and correlation matrix Rn, where for |ρ| < 1, (see Graybill, 2004)

Rn =


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1

 , R−1
n =


1/(1− ρ2), if i = j = 1, n,

(1 + ρ2)/(1− ρ2), if i = j = 2, · · · , n− 1,

−ρ/(1− ρ2), if |j − i| = 1,

0 otherwise.

ESST = (2 + (n− 2)(1− ρ))/(1 + ρ).

Furthermore, straightforward calculations show that for 0 < ρ < 1 and n > 2,

EESI < ESST .

Hence, the reduction in R under the Toeplitz structure is not as severe as in the intra-class correlation

case. Based on Figure 1 (a) and (b), we see that in both cases, ESS is decreasing in ρ.
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SOME RESULTS

Proposition 1. Let s1, s2, . . . , sn be n locations in D ⊂ Rr, with r fixed. Consider a random spatial

vector Y (s) = (Y (s1), Y (s2), · · · , Y (sn))t with the expected value µ1n and correlation matrix Rn.

ESS is increasing in n for a fixed value of r.

Proposition 2. Under the same conditions as in Proposition 1, 1 ≤ ESS ≤ n.

Now, consider a CAR model of the form

(4) Y (si) | Y (sj), j 6= i ∼ N(µi + ρ
∑
j

bijY (sj), τ
2
i ), i = 1, 2, · · · , n.

where ρ determines the direction and magnitude of the spatial neighborhood effect, bij are weights

that determine the relative influence of location j on location i, and τ2i is the conditional variance. If n

is finite, we form the matrices B = (bij) and D = diag(τ21 , τ
2
2 , · · · , τ2n). According to the factorization

theorem,

Y (s) ∼ (µ, (I − ρB)−1D).

We assume that the parameter ρ satisfies the necessary conditions for a positive definite matrix (See

Banerjee et. al, p.79-82 ). One common way to construct B is to use a defined neighborhood matrix

W that indicates whether the areal units associated with the measurements Y (s1), Y (s2), · · · , Y (sn)

are neighbors. For example, if bij = wij/wi+ and τ2i = τ2/wi+, then

(5) Y (s) ∼ (µ, τ2(Dw − ρW )−1),

where Dw = diag(wi+). Note that Σ−1

Y
= (Dw − ρW ) is nonsingular if ρ ∈ (1/λ(1), 1/λ(n)) where λ(1)

and λ(n) are the smallest and largest eigenvalues of D
−1/2
w WD

−1/2
w ,, respectively.

Proposition 3. For a CAR model with Σ = τ2(Dw−ρW )−1 where σi = Σ
1/2
ii and C = diag(σ1, σ2, . . . , σn)

(6) ESS =
1

τ2

∑
i

σ2iwi+ − ρ
∑
i

∑
j

σiσjwij

 ,
where wi+ =

∑
j wij .

Now, let us consider a SAR process of the form

Y (s) = X(s) + e(s)

e(s) = Be(s) + v(s)

where B is a matrix of spatial dependency, E[v(s)] = 0, and Σv(s) = diag[σ21, . . . , σ
2
n]. Then, Σ =

V ar[Y (s)] = (I −B)−1Σv(s)(I −Bt)−1. Then, we can state the following results.

Proposition 4. For a SAR process with B = ρW where W is any contiguity matrix, σv(s) = σ2I,

σi = Σ
1/2
ii and C = diag(σ1, σ2, . . . , σn), the effective sample size is given by

(7) ESS =
1

σ2

∑
i

σ2i − 2ρ
∑
i

∑
j

σiσjwij + ρ2
∑
i

∑
j

∑
k

σiσjwkiwkj

 .
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The proofs of Propositions 1-4 are in the Appendix.

FUTURE RESEARCH

There are several ways to study effective sample size. One line of research involves studying the effect

of dimension r on ESS. This can be done by considering the unit sphere centered at the origin with the

radius constant over r, e.g., 1/2. This makes the spaces comparable in terms of their dimensions with

regard to the maximum distance. Our conjecture is that ESS is increasing in r, assuming a uniform

distribution of the locations. Another line of research involves the estimation of ESS. Let us consider

a model of the form

(8) Y (s) = X(s)β + ε(s),

where Y (s) = (Y (s1), Y (s2), · · · , Y (sn))t, ε(s) = (ε(s1), ε(s2), . . . , ε(sn))t, and X(s) is a design ma-

trix compatible with the dimensions of the parameter β. Let us assume that ε(s) ∼ N(0,Σ(θ)). This

notation emphasizes the dependence of Σ on θ. Notice that the model for which ESS was defined in

(3) is a particular case of (8) when X(s)β = 1µ. Thus, we can rewrite the effective sample size to

emphasize its dependence on the unknown parameter θ as follows:

ESS = 1tR−1
n (θ)1.

To estimate ESS, it is necessary to estimate θ. Cressie and Lahiri (1993) studied the asymptotic

properties of the restricted maximum likelihood (REML) estimator of θ in a spatial statistics context.

We find it necessary to study the asymptotic properties of the estimation

ÊSS = 1tR−1
n (θreml)1.

The limiting value of 1R−1
n 1 has been studied in the context of Ornstein-Uhlenbeck processes (Xia,

et al., 2006). More specifically, the single mean model with intra-class correlation can be studied in

detail following the inference developed in Paul (1990).
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APPENDIX

Proof of Proposition 1

Proof. It is enough to show that ESSn+1 − ESSn ≥ 0, for all n ∈ N.
First, we define the matrix

Rn+1 =

(
Rn γ

γt 1

)
,

where γt = (γ1, γ2, · · · , γn), 0 ≤ γi ≤ 1, for all i. Since Rn+1 is positive definite, the Schur complement

(1− γTR−1
n γ) of Rn is positive definite (Harville 1997, p. 244). Thus (1− γTR−1

n γ) > 0.

Now, writing Rn+1 as a partitioned matrix we get

ESSn+1 = 1tn+1R
−1
n+11n+1 = 1tn+1

(
Rn γ

γt 1

)−1

1n+1 = ESSn +
(1tnR

−1
n γ)2 − 21tnR

−1
n γ + 1

1− γtR−1
n γ

,

where 1tn+1 = (1n 1)t. Since the function f(x) = x2 − 2x + 1 = (x − 1)2 ≥ 0, for all x, we have that

ESSn+1 − ESSn ≥ 0, for all n ∈ N.

Proof of Proposition 2

Proof. To prove that 1 ≤ ESS it is enough to use the Cauchy- Schwartz inequality for matrices.

ESS ≤ n can be proved by induction over n.

Proof of Proposition 3

Proof. For Σ = τ2(Dw − ρW )−1 where σi = Σ
1/2
ii and C = diag(σ1, σ2, . . . , σn) , it is easy to see that

ESS =
1

τ2

∑
i

σ2iwi+ − ρ
∑
i

∑
j

σiσjwij

 .

Proof of Proposition 4

Proof. Equation (7) can be derived from the following facts:

R−1
SAR = CΣ−1

SARC = 1
σ2C(I − ρW t)(I − ρW )C = 1

σ2 (I − ρW − ρW t + ρ2W tW ), ρ1tCWC1 =

ρ1tCW tC1 = ρ
∑
i

∑
j
σiσjwij , and ρ21TCW TWC1 = ρ2

∑
i

∑
j

∑
k

σiσjwkiwkj .

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS029) p.4531


