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Abstract: Understanding relationships among tree species, or between tree diversity, distribution,
and underlying environmental gradients, is a central concern for forest ecologists, managers, and
management agencies. The spatial processes underlying observed spatial patterns of trees or edaphic
variables often are complex and violate two fundamental assumptions—isotropy and stationarity—of
spatial statistics. Codispersion analysis is a new statistical method developed to assess spatial
covariation between two spatial processes that may not be isotropic or stationary. Its application to
data from large forest plots has provided new insights into mechanisms underlying observed patterns
of species distributions and the relationship between individual species and underlying edaphic and
topographic gradients. However, these data are not collected without error, and the performance of
the codispersion coefficient when there is noise or measurement error (“contamination”) in the data
heretofore has been addressed only theoretically. Here, we use Monte Carlo simulations and real
datasets to investigate the sensitivity of codispersion to four types of contamination commonly seen
in many forest datasets. Three of these involved comparing codispersion of a spatial dataset with a
contaminated version of itself. The fourth examined differences in codispersion between tree species
and soil variables, where the estimates of soil characteristics were based on complete or thinned
datasets. In all cases, we found that estimates of codispersion were robust when contamination was
relatively low (<15%), but were sensitive to larger percentages of contamination. We also present
a useful method for imputing missing spatial data and discuss several aspects of the codispersion
coefficient when applied to noisy data to gain more insight about the performance of codispersion
in practice.

Keywords: codispersion coefficient; codispersion map; imputation; kriging; measurement error;
missing observations; spatial noise

1. Introduction

Spatial associations are a fundamental aspect of most ecological and environmental data, including
size-frequency distributions of trees, their co-occurrence and diversity, and the relationships between
trees and underlying edaphic characteristics or topographic variables such as distance to water table,
slope, and aspect. Although accounting for spatial covariation has become routine in ecological data
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analysis [1], forest ecologists have been slower to appreciate and account for anisotropic patterns
and processes (but see, e.g., [2]). Codispersion [3] measures lag-dependent spatial covariation in
two or more spatial processes, which may be anisotropic. Codispersion recently has been used to
examine interactions between species, and relationships between species distributions and underlying
environmental gradients in large (>25-ha) forest dynamics plots. These analyses have provided new
insights into potential ecological processes that underlie observed patterns in co-occurrence between
pairs of tree species [4], in relationships between attributes of individual tree species and underlying
edaphic characteristics [5], and in forest structure through time [6].

All applications of codispersion analysis that have been published to date have assumed either that
there are no errors in the datasets or that any errors that are present would have no effect on the analysis.
These assumptions are clearly unrealistic. The goal of this paper is to better understand how sensitive
the codispersion coefficient is to different types of noise and measurement error (“contamination”) in
analyzed datasets, and address the implication of this sensitivity for spatial analysis of data collected
on forest structure and composition. We approach this goal by using Monte Carlo simulation studies
to examine several classes of noise that we would expect to occur in datasets or images analyzed
using codispersion. Our focus here is on the analysis of data gathered from large forest plots either by
remote sensing or on-the-ground sampling that are used to describe forest structure or test hypotheses
regarding the relationship between spatial distribution of trees and edaphic variables. However, the
results are generalizable to any dataset for which there is either measurement error in the spatial data
collected or process error in the spatial models that are used in subsequent analysis.

Measurement (observation) error can occur in several ways. For example, trees can be
misidentified by observers or pixels in remotely-sensed images can be misclassified. Either can
affect inferences about interspecific relationships or associations between plant species and edaphic
characteristics. To examine the effect of these “simple” observation errors (misidentification or
misspecification) on codispersion analysis, we added statistical noise to a fixed number of random
points (or pixels) in a dataset (here, a remotely-sensed image of a forest stand) either as white noise
(spatially independent and identically distributed) or as a spatially-dependent process.

Another type of measurement error would be when clusters of individuals are missed or
overlooked in a census of a forest stand, either through human error of if clusters of pixels in a
remotely-sensed image are unmeasurable because of cloud cover. Spatial analysis of such data would
require that these gaps be filled, and we present and assess the consequences of different algorithms
for interpolation prior to calculation of codispersion [7].

The flip-side of interpolating missing data is to smooth sparsely-collected data (e.g., soils data
smoothed using kriging, splines, etc.); the smoothed surface is subsequently sampled at specific
(otherwise unsampled) points to test for associations between individual tree species and (estimated)
local environmental (e.g., soil) properties. Errors here can occur because of mis-specified models or
because too few data are available to construct a reliable smoothed surface. We examined these issues
for the assessment of relationships between trees and soil characteristics when different amounts of
modeled error were introduced into the environmental data as a result of kriging surfaces derived
from complete or “thinned” datasets; the latter mimicked datasets with missing values.

In all of these cases, the effects of error were tested in one of two ways. For single datasets
(images) to which we added random or clustered errors, we calculated the codispersion between the
original dataset (image) and the contaminated version of itself. In those cases, we examined differences
between high- and lower-quality (error-filled) images. For species–soil relationships, we compared
the results obtained using kriged surfaces derived from the complete sample of soil properties versus
those derived from soil samples missing random points (the “thinned”) data.

In Section 2, we describe the codispersion coefficient and a way to visualize it (i.e., a codispersion
map). We also specify the different types of contamination and observation error that we added to both
real and simulated datasets, and describe the method we used for imputing missing data. Results are
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presented in Section 3, and discussed in Section 4. Technical details on simulation and imputation
algorithms are given in Appendix A.

2. Methods

2.1. Preliminaries and Notation

Here, we briefly introduce the notion of the codispersion coefficient, first described in [8], and
the graphical codispersion “map” developed in [3] and applied to forest data in [4]. These statistical
entities characterize the spatial correlation between two spatial processes as a function of the separation
distance (lag) between the points.

Let us consider two spatial processes {X(s) : s ∈ D ⊂ R2} and {Y(s) : s ∈ D ⊂ R2}, where
both processes are defined on a part of a region D ⊂ R2 (or on a rectangular lattice D ⊂ Z2). For two
intrinsically stationary processes X(·) and Y(·), the codispersion coefficient is defined as

ρXY(h) =
E [(X(s + h)− X(s))(Y(s + h)−Y(s))]√
E[X(s + h)− X(s)]2E[Y(s + h)−Y(s)]2

, (1)

for h = (h1, h2), s + h ∈ D. This coefficient shares several properties with Pearson’s correlation
coefficient (r). First, the structure of ρxy is computationally similar to r. Second, like r,−1 ≤ ρXY(h) ≤ 1,
which facilitates its interpretation because the upper and lower bounds define perfect negative or
positive spatial association, respectively. Unlike r, however, ρxy depends on the spatial lag h, which
emphasizes that spatial correlation is a value associated with a distance on the plane. This facilitates the
computation of correlation for different distances and directions on the space. In this sense, Pearson’s
correlation is a crude measure of the spatial association between two processes.

For n sampling sites s1, . . . , sn, the sample-based estimator of (1), based on the method of
moments, is

ρ̂XY(h) =

∑
s∈N(h)

(X(s)− X(s + h))(Y(s)−Y(s + h))√
∑

s∈N(h)
(X(s)− X(s + h))2 ∑

s∈N(h)
(Y(s)−Y(s + h))2

, (2)

where N(h) = {(si, sj) : ||si − sj|| ∈ T(h), 1 ≤ i, j ≤ n}, T(h) is a tolerance region around h,
and || · || denotes the Euclidean norm in R2. The estimator of the codispersion coefficient given in
Equation (2) can be computed for any fixed spatial lag h. This computation can be difficult if the
number of points is small or if N(h) is an empty set. We emphasize that the empirical estimator of the
codispersion coefficient makes real sense when the processes are defined on a finite rectangular grid in
a two-dimensional space that corresponds to the assessment of the similarities between two digital
images [9].

When the codispersion coefficient is computed for many directions, it is useful to display those
values on a single graph. Vallejos [3] suggested a graphical tool called the codispersion map to visualize
the spatial correlation between two sequences on a plane. The estimated values illustrated by the
codispersion map are based on Equation (2). A finite grid on the plane is first defined on which the
codispersion coefficient will be computed for each location in that grid. The codispersion map itself is
the graph of ρ̂XY(h1, h2) versus (h1, h2); plotting the codispersion map summarizes the information
about the spatial association between two sequences in a radial way on the plane circumscribing the
map in a semicircle of fixed radius.

Note that ρ̂XY(h) does not capture similarity that is related to the patterns or shapes that are
present in the images. Rather, it captures the spatial dependence between the processes for a given lag
distance h.
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2.2. Types of Error

In spatial modeling and time series, several types of error (a.k.a. noise) can be specified [10,11].
Here, we considered five types of error frequently observed in spatial data; our examples are drawn
from data collected from forest stands, which to date have been the primary testbed for ecological
applications of codispersion analysis.

1. “Salt-and-pepper” noise on an image: Salt-and-pepper noise—so-called because of its
resemblance to dust on images that appears to have been distributed by a salt or pepper shaker—is
used widely in image processing and computational statistics to represent real distortions [12]
and to generate different scenarios via Monte Carlo simulation [13]. Salt-and-pepper noise can be
added to an image using a simple algorithm:

Assume that {X(s) : s = (i, j), 1 ≤ j ≤ m, 1 ≤ j ≤ n} is the original image whose individual
observations are points or pixels representing leaves or trees and Y(i, j) is the contaminated image
with salt-and-pepper noise such that the additive noise is drawn from a normal distribution with
mean = 0 and variance τ2, with τ2 � σ2, where σ2 is the variance of X(i, j). The contamination
is located randomly in space such that a small percentage of observations are corrupted with a
probability δ [3]. Specifically,

Y(i, j) = X(i, j) + ν(i, j)V(i, j), i = 1, . . . , m, j = 1, . . . , n, (3)

where the ν(i, j)V(i, j) is an outlier generating process such that ν(i, j) is a zero-one process with
P[ν(i, j) = 1] = δ and P[ν(i, j) = 0] = 1− δ, and V(i, j) ∼ N (0, τ2).

We used Monte Carlo simulations of (3) to generate salt-and-pepper noise on a 5616 × 3744-pixel
aerial image of a forest stand at Harvard Forest in Petersham, MA, USA (Figure 1). We considered
σ2 = 1, τ2 = {1, 5, 10}, and the percentage of contamination δ = {0.05, 0.1, 0.25}. We conjectured
that the codispersion coefficient would be robust for δ ≤ 0.05. That is, for relatively small amounts
of measurement error, we could still recover the relevant spatial information present in the
remotely-sensed image.

In Figure 1a, we illustrate the noise-free image. Figure 1c,e,g is contaminated versions of the original
one when δ = {0.05, 0.10, 0.25}. The corresponding perspective plots shown in Figure 1b,d,f,h
depict the effect of contamination on the gray intensities. The greater the contamination, the greater
the dispersion, which is plotted on the z-axis of the three-dimensional scatter plots displayed in
Figure 1.

We then compared the codispersion calculated for the original image to that calculated for the
contaminated images. In addition to the reference image shown in Figure 1a, we considered other
aerial images. The codispersion maps of these images are presented in the supplementary material
for this paper. We emphasize that the computation of the codispersion coefficient requires that both
processes are measured over the same domain, thus the codispersion between a reference image
and its contaminated versions make sense. To address the codispersion between two images taken
from different scenarios (for instance, images displayed in the supplementary material), rasterized
versions of the original images could be considered following the guidelines given in [4].



Forests 2018, 9, 679 5 of 22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. (a) reference image of size 5616× 3744 pixels taken above a section of forest at the Harvard
Forest, Petersham, MA, USA and (b) its corresponding gray scale values. (c,e,g) are the same image
distorted with increasing amounts of salt-and-pepper noise. The percentages of contamination are
5%, 10%, and 25%, respectively; (d,f,h) show the change in gray intensity after the addition of
salt-and-pepper noise to the images.
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2. Salt-and-pepper noise on dependent processes: More generally, Reference [14] extended the well
known Matérn class of covariance functions to a multivariate random field. For multivariate
Gaussian and second-order processes, the multivariate Matérn covariance function is defined as

M(h|ν, a) =
21−ν

Γ(ν)
(a||h||)νKν(a||h||), (4)

where ||h|| is the distance lag, Kν is a modified Bessel function of the second kind, a > 0 is a spatial
scale parameter, and ν > 0 is a smoothness parameters that defines the Hausdorff dimension and
the differentiability of the sample paths. In particular, a Gaussian and second-order stationary
process (X(s), Y(s))>, s ∈ D ⊂ R2 has a bivariate Matérn covariance matrix if(

C11(h) C12(h)
C21(h) C22(h)

)
, (5)

where h ∈ D, Cii(h) = σ2
i M(h|νi, ai) are the marginal covariance functions, with variance

parameter σ2
i > 0, smoothness parameter νi > 0, and scale parameter ai > 0 for i = 1, 2.

C12 = C21 = ρ12σ1σ2M(h|ν12, a12) is the cross-covariance function, with correlation coefficient
ρ12, smoothness parameter ν12, and scale parameter a12. In all cases, M(·) is the function defined
in Equation (4). The parsimonious bivariate Matérn model has the restriction

|ρ12| ≤
(ν1ν2)

1/2

1
2 (ν1 + ν2)

. (6)

The correlation between the spatial variables X(·) and Y(·) is controlled by the parameter ρ12, which
allows one to generate bivariate Gaussian spatial processes with different levels of dependence.
The spatial correlation defined by Equation (6) is not necessarily bounded by 1. Without loss of
generality, it can be assumed that the mean of the bivariate process is zero, but the theory works
well for any bivariate process with mean (µ1, µ2)

>. Any type of contamination can be applied over
the generated dependence data. In this case, we applied salt-and-pepper noise.

We generated dependent random fields from the bivariate Matérn class of covariance functions
described in Equation (5) by Monte Carlo simulation using the R package RandomFields [15].
We then added the salt-and-pepper noise, varying the additional parameter ρ12, which represents
the known correlation between processes X(·) and Y(·).
Figure 2 shows one realization of size 512× 512 from a bivariate Gaussian process (images (a)
and (b)) with correlation equal to 0.8, and ν1 = ν2 = ν12 = 0.5, σ2

1 = σ2
2 = 1, µ1 = µ2 = 0.5 and

a1 = a2 = 2/512. Figure 2c,d,e show versions of (b) contaminated with salt-and-pepper noise with
the percentage of contamination equal to 5%, 15%, and 25%, respectively. Because the Gaussian
process is stationary, images (a) and (b) look very regular (approximately constant mean and
variance), and any correlation between them (if it exists) is difficult to observe in the printed images.
Other parameters used in the simulation study are ν1 = ν2 = 0.5, ν12 = 1.5, σ2

1 = σ2
2 = 0.125,

µ1 = µ2 = 0.5, ρ12 = 0.1 and a1 = a2 = 4/512. The results are similar to the shown here, but with
a codispersion map close to zero.
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(a) (b)

(c) (d) (e)

Figure 2. Images (a,b) are dependent processes generated from a Gaussian process with a covariance
matrix as in (5); (c–e) salt and pepper contamination of (b) considering δ = (0.05, 0.15, 0.25), and
ν1 = ν2 = ν12 = 0.5, σ2

1 = σ2
2 = 1, µ1 = µ2 = 0.5, ρ12 = 0.8 and a1 = a2 = 2/N in each case, where

N × N is the size of the image.

3. Missing observations at random locations: We used the salt-and-pepper scheme to randomly
delete n observations. We first defined the percentage of contamination (δ), and then deleted that
many observations from the dataset. In practice, we replaced observations with non-observed (NA)
at the randomly-selected locations. The main feature of these missing observations is that they are
spatially independent of one another, but, for the posterior data analysis, they will remain fixed.
The imputation algorithm described in the Appendix A was not applied here because codispersion
calculations are not affected when the percentage of contamination δ is small.

In Figure 3, we illustrate the missing-observations-at-random-locations with nine contaminated
versions of the original image shown in Figure 1a. The columns show the effect of increasing the
percentage of contamination (5%, 15%, and 25%, respectively), and the rows depict the effect of
increasing the block size of contaminated pixels, which are 15× 15, 30× 30, and 60× 60 respectively.
The contaminated pixels have been colored in white. NAs were ignored in the computation of
the codispersion coefficients because for large gaps of missing observations the computation of
the codispersion coefficient will be affected for those directions h such that ||h|| is less than the
maximum diameter of the missing block.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Contamination of of the reference image shown in Figure 1a by salt and pepper at random
locations. The missing blocks are of size 15× 15, 30× 30, and 60× 60, respectively, shown in the
different columns. (a–c): the proportion of missing blocks is 0.000002; (d–f): the proportion of missing
blocks is 0.000004; (d–f): the proportion of missing blocks is 0.000008.

4. Gaps resulting from clusters of missing observations: Missing values may be clustered,
for example, either because of local difficulties in sampling or because large sections of a
remotely-sensed image are obscured by, for example, clouds or shadows. We simulated clustered
missing observations for the image shown in Figure 1a, given three different pixel sizes for the
contaminated block: 200× 200, 400× 400, and 800× 800 (Figure 4). We used simple clustered
geometries (squares) for ease of computation. The difference between the previous type of
contamination and this one is that, in the former, the contamination consisted of several blocks of
small size. Here, we introduced just one gap containing a large number of pixels, which, in Figure
4, is located for illustrative purposes in the center of the image. In our simulations and analysis,
the size of the missing block and its location were fixed.

To compute codispersion coefficients for datasets with such large blocks of missing data, we needed
to fill the missing gaps (impute missing data) prior to computing the codispersion coefficient.
We used and compared two different methods of imputation (gap-filling).

First, the image with a missing gap was represented by a first-order spatial autoregressive process.
The fitting of the parameters of the models was done via least-squares estimation following the
guidelines given in [16]. This estimation method was studied in [17] and found to yield an
approximated image Ẑ of the original one X (see Algorithm 1 in the Appendix A).



Forests 2018, 9, 679 9 of 22

(a) (b) (c)

Figure 4. Gaps of missing observations of sizes 200× 200 (a); 400× 400 (b); and 800× 800 (c).

Second, to predict the values of the process in the locations belonging to the missing block, we
applied Algorithm 1 to predict missing values in the four closest blocks to the missing gap as is
illustrated in Figure A1. This prediction scheme is summarized in Algorithm 2 (Appendix A).
Briefly, the first step represents the image intensity by an autoregressive process that assumes that
the intensity of any pixel is a weighted average of the intensity of the surrounding pixels. This is a
model-based alternative to the average or median commonly computed using the intensities of
a moving window across the image. The second step predicts the missing values using similar
autoregressive models to represent the surrounding blocks. The predicted value of a pixel belonging
to the missing block is a weighted average where the weights are proportional to the distance from
the missing pixel to the surrounding blocks.

5. Sampling error: Values for edaphic or environmental variables at specific locations in space often
are sampled from a smoothed (kriged) surface, which itself was generated from a much smaller
set of field observations. The actual information in the kriged surface is a function of both the
number of observations and the smoothing parameter of the covariance function [18]. For a pair of
spatial point processes X(·) and Y(·) (e.g., individual forest trees and soil nutrient concentrations
at each tree, respectively), where the number of observed trees (hundreds to thousands) vastly
exceeds the number of soil samples (tens), we kriged the soil chemistry variables after thinning
(or not) and then calculated the codispersion between the observed tree diameters and the value of
the soil-chemistry variable predicted (at each tree location in X(·)) from the kriged surface Ŷ(·) of
soil-chemistry data. The kriged surface was computed either from all the data or from “thinned”
soil datasets that contained 90% or 80% of the original soil chemistry data [18]. The sampling error
here is error in the predicted values at points on the kriged surface caused by fitting the surface to
fewer and fewer points in the “thinned” datasets.

To illustrate the effect of this sampling error, we used data from plants and soils collected in the
50-ha forest dynamics plot on Barro Colorado Island, Panamá [19–21]. Of the 299 plant species
mapped, identified, and measured every five years in this plot, we used six: Alseis blackiana,
Oenocarpus mapora, Hirtella triandra, Protium tenuifolium, Poulsenia armata, and Guarea guidonia
(Figure 5). The abundances of unique single-stemmed individuals of each of these six species
ranged from 993 (Poulsenia armata) to 7928 (Alseis blackiana), and included species that had a range
of positive, negative, and weak associations with measured soil variables [22]. Spatial locations
and “diameters at breast height” (at 1.3 m aboveground) of individual trees of each species
(excluding dead individuals and individuals with more than one stem) were taken from the
seventh (2010) semi-decadal census of the plot.
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Figure 5. Distribution and size of the six species of trees growing in the 50-hectare plot at Barro
Colorado Island, Panamá that we analyzed to assess the effect of sampling error.

Soil samples were collected on a 50-m lattice in 2005 with additional samples taken at finer
spatial grains at alternate sampling stations [22]. Soil samples were analyzed for concentrations
of 11 elements; we used only data for concentrations of calcium (Ca), phosphorus (P), and
aluminium (Al), as these three had the highest loadings on the first three principal axes of a
multivariate analysis (NMDS) on the complete soil dataset [22]. We used ordinary kriging in the
geoR package [23], version 1.7-5.2, to fit a surface to the data for each soil element and predict its
concentration at the location of each tree (Figure 6). Variogram models (exponential, exponential,
and wave for Ca, P, and Al, respectively) needed as input for the kriging function were fit to
detrended (2nd-order polynomial) data that had been Box–Cox transformed (λ = 0.5, 1.0, and 1.0
for Ca, P, and Al, respectively); kriging was done on back-transformed data to which the trend
had been added. Nuggets were estimated empirically for Ca and P, but the nugget for Al was
fixed (following visual inspection of the empirical variogram) equal to 4000. Alternatively, in order
to take into account the spatial heterogeneity, one could perform a test to measure the degree of
spatial heterogeneity along the lines given in [24], before applying the kriging interpolation.
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Figure 6. Kriged surfaces of the concentration (mg/kg) of aluminum (Al; top), calcium (Ca; center),
and phosphorus (P; bottom) in the 50-hectare plot at Barro Colorado Island, Panamá. Contours were
estimated for a regular grid (5-m spacing) based on data from samples taken at approximately
50-m intervals. Interpolated values of mineral concentrations were estimated at individual points
(locations of trees) shown on the plots.

3. Results

We used codispersion maps [3,4] to explore the possible patterns and features caused by the
introduction of noise and to evaluate the performance of the codispersion coefficient when the process
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was contaminated with one of the distortions described above. Recall that the generation of the noise
is through statistical models that do not necessarily include a particular direction in space. The effects
of specific directional contamination on codispersion was investigated in [3].

The only effect observed when the forest image was contaminated with salt-and-pepper noise
(Figure 1) was a trend of decreasing codispersion between the original and contaminated images with
an increase in the percentage of contamination (in Figure 7, notice a color degradation in the map
as the percentage of contamination increases). In the case of the dependent processes generated by
a Gaussian process with covariance matrix as in (5), we plotted the codispersion maps between the
original and contaminated images displayed in Figure 2. The salt-and-pepper contamination caused
a complete loss of correlation between the two images, which were originally correlated strongly
(r = 0.8; Figure 8). This is in agreement with [3], who reported that visually, it is possible to observe
a degradation of the original patterns as an effect of the percentage of contamination. A decrease
in codispersion between the original and contaminated images was also observed when noise was
introduced through missing observations at random locations or as the missing block size increased
(Figure 9).

Figure 4 illustrates how we introduced large gaps of missing values in the center of the reference
image shown in Figure 1a. Before computing the codispersion map, we imputed the missing data
(Algorithm 2 in the Appendix A). Although the performance of such algorithms strongly depends on
the size of the block of missing observations, the construction of it is based on the spatial information
contained in the nearest neighbors (Algorithm 1 in the Appendix A). The spatial autoregressive lags
in the AR-2D process are fixed when the order of the process is chosen. In this case, three neighbors
were considered in a strongly causal set to guarantee an infinite moving average representation of the
process. The images filled by the imputation algorithm are shown in Figure 10d–f. The filled areas
are smooth in terms of texture and have a smaller variance. Visually, the imputation of the larger
missing block looks different from the rest of the image. For small missing blocks, it is difficult to see
the imputed values. From Figure 10g–h, we observed that Algorithm 2 was able to recover valuable
information and that the codispersion between the original and imputed images in all cases was close
to one.

Finally, the codispersion between tree species’ diameters (for the six species shown in Figure 5)
and the three soil elements (Figure 6) sampled in the Barro Colorado Island plot at three levels of data
“thinning” (i.e., estimates of soil properties derived from kriged surfaces of all the soil samples, 90% of
them, or 80% of them) showed that codispersion was robust to this form of error. Only the results for
the most abundant (Figure 11) and the least abundant (Figure 12) species are shown.

(a) (b) (c)

Figure 7. Codispersion map between (a) the original Figure 1a,c (5%); (b) the original Figure 1a,e
(15%); (c) the original Figure 1a,g (25%).
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(a) (b)

(c) (d)

Figure 8. Images (a–d) are the corresponding codispersion maps between Figure 2a and the
contaminated Figure 2b–e.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Codispersion map between the reference Figure 1a and the images contaminates with missing
observation at random locations depicted in Figure 3a–i. Images (a)–(i) show how the correlation
decreases when the missing block size increases.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. Contamination of the reference Figure 1a by gaps resulting from clusters of missing
observations. Images (a–c) contain only one missing block in the center of the image of sizes 200× 200,
400× 400, y 800× 800, respectively. These missing data were filled in images (d–f) using the imputation
algorithm described in the Appendix. Images (g–l) are the corresponding codispersion maps between
Figure 1a and the imputed images (d–f).
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(a) Al (b) Al90 (c) Al80

(d) Ca (e) Ca90 (f) Ca80

(g) P (h) P90 (i) P80

Figure 11. Codispersion between species A. blackiana and soil chemistry variables; (Al (a–c); Ca (d–f)
and P (g–i)). Soil data were unthinned (a,d,g); thinned 10% (b,e,h); or thinned 20% (c,f,i).
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(a) Al (b) Al90 (c) Al80

(d) Ca (e) Ca90 (f) Ca80

(g) P (h) P90 (i) P80

Figure 12. Codispersion between species P. armata and soil chemistry variables; (Al (a–c); Ca (d–f) and
P (g–i)). Soils data were unthinned (a,d,g), thinned 10% (b,e,h), or thinned 20% (c,f,i).

4. Discussion

The methods and examples developed in this paper improve our understanding of the behavior
of the codispersion coefficient when data are noisy or have been contaminated by various types of
errors common in remotely-sensed images or in interpolated and predicted (e.g., kriged) surfaces.
The codispersion coefficient appears to be robust for small percentages of contamination (<15%) but
always leads to an underestimation of the codispersion between the datasets. As the percentage of
contamination increases, codispersion decreases uniformly for all directions on the plane, thus the
types of noise considered in this paper did not affect the codispersion in any particular direction(s).
Although the performance of codispersion for directional noise was explored in [3,25], directional
noise has not yet been observed in real datasets.

When applied to data collected from large forest plots, codispersion has been shown to be
useful for describing scales of covariation in two or more variables across complex spatial gradients
(e.g., [4,5]). Our ability to detect such spatial pattern depends on the grain of spatial variation in
the data and how this compares to the lag sizes used in the codispersion analysis. For example,
the complete loss of correlation between the two images in Figure 2 with only a small degree of
contamination highlights the importance of considering the spatial grain of the datasets relative to that
of the noise-inducing processes. The coarser-grained spatial pattern in the forest images is retained,
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even under contamination, whereas the spatial dependence in the images in Figure 2 is at a smaller
grain than the extent of the image, which is relatively heavily disturbed by the salt-and-pepper noise.

The imputation algorithm described in Appendix A seems to be a promising technique to
handle blocks of missing observations. Several aspects of it are worth exploring with future research.
These include the success of the algorithm in recovering missing observations as a function of the block
size; how to select the number of neighbors to be considered in the AR-2D process; and the similarity
between the texture of the imputed observations and the texture of the reference image. For simplicity
and without loss of generality, the missing blocks we illustrated were square regions located in the
center of the image, but certainly Algorithm 2 could be extended to other types of regions located
anywhere in the image.

More general aspects of codispersion analysis are in need of further exploration and testing. First,
it will be of interest to study the results of codispersion analysis of rasterized images. This is because
rasterization of images is widespread and common rasterization methods rarely, if ever, preserve
the original spatial correlation of each process. The development of a new rasterization method that
preserves better the spatial correlation within processes could follow [26]. Second, the computation
of codispersion maps is computationally expensive. Thus, the development of efficient algorithms
capable of creating codispersion maps for large images is still needed.

5. Conclusions

The codispersion map is a useful tool that illustrates those directions for which the codispersion
coefficient between two spatial processes attains its maximum and minimum values. When the
direction of interest in unknown, the codispersion map also visually and concisely summarizes the
correlation between two processes in a plane. When data are noisy or have some degree of observation
or process error our results suggest that:

(1) The codispersion coefficient is robust to small percentages of contamination (less than 15%).
(2) The codispersion coefficient decreases as the percentage of contamination increases no matter the

type of noise or direction.
(3) For data collected from large forest plots, the codispersion coefficient and the associated

codispersion map provide useful information to describe covariation in the data across complex
spatial gradients or patterns.

(4) An imputation algorithm can be used to smoothly fill blocks of missing observations with little
impact on the codispersion coefficient.

The development of codispersion maps for large data sets can be addressed by using the effective
sample size for spatial variables, recently proposed in [27].

Supplementary Materials: Analyses were done using the R software system, version 3.3.1 [28]. The images and
all the code used in this paper are available from https://github.com/JAcostaS/Code-and-Example-Codismap.git.
Barro Colorado Island (BCI) vegetation and soils data are available from http://ctfs.si.edu/webatlas/datasets/
bci/.
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Appendix A. Image Imputation Algorithm

The algorithm described below is based on the fact that it is possible to represent any image by
using unilateral AR-2D processes [17,29]. The generated image is called a local AR-2D approximated
image by using blocks.

Let Z = {Zr,s : 0 ≤ r ≤ M− 1, 0 ≤ s ≤ N − 1} be an original image, and let X the original image
corrected by the mean. That is, Xr,s = Zr,s − Z, for all 0 ≤ r ≤ M− 1, 0 ≤ s ≤ N − 1, and for which Z
is the mean of Z.

Following [30], assume that X follows a causal AR-2D process of the form

Xr,s = φ1Xr−1,s + φ2Xr,s−1 + φ3Xr−1,s−1 + εr,s,

where (r, s) ∈ Z2, (εr,s)(r,s)∈Z2 is Gaussian white noise, and φ1, φ2, and φ3 are the
autoregressive parameters.

Let 4 ≤ k ≤ min(M, N). For simplicity, we consider that the images to be processed are arranged
in such a way that the number of columns minus one and the number of rows minus one are multiples
of k− 1; Then, we define the (k− 1)× (k− 1) block (ib, jb) of the image X by

BX (ib, jb) = {Xr,s : (k− 1)(ib − 1) + 1 ≤ r ≤ (k− 1)ib, (k− 1)(jb − 1) + 1 ≤ s ≤ (k− 1)jb},

for all ib = 1, · · · , [(M− 1)/(k− 1)] and for all jb = 1, · · · , [(N − 1)/(k− 1)], where [·] denotes the
integer part. The M′ × N′ approximated image Ẑ, where M′ = [(M− 1)/(k− 1)] (k − 1) + 1 and
N′ = [(N − 1)/(k− 1)] (k− 1) + 1 can be obtained by the following algorithm.

Algorithm 1 Approximated AR-2D Image.
Input: An original image Z of size M× N.

Output: An approximated Ẑ of size M′ × N′.

1: for each block BX (ib, jb) do
2: Compute the least square (LS) estimators of φ1, φ2 and φ3 associated with block BX (ib, jb) .
3: Define X̂ on the block BX (ib, jb) by

X̂r,s = φ̂1 (ib, jb) Xr−1,s + φ̂2 (ib, jb) Xr,s−1 + φ̂3 (ib, jb) Xr−1,s−1,

where (k− 1)(ib − 1) + 1 ≤ r ≤ (k− 1)ib, (k− 1)(jb − 1) + 1 ≤ s ≤ (k− 1)jb, and φ̂1 (ib, jb),

φ̂2 (ib, jb), and φ̂3 (ib, jb) are the LS estimators of φ1, φ2 and φ3 respectively.
4: end for
5: The approximated image Ẑ of Z is:

Ẑr,s = X̂r,s + Z, 0 ≤ r ≤ M′ − 1, 0 ≤ s ≤ N′ − 1.

6: Return Ẑ.

Now suppose that image Z has a rectangular block of missing values. Without loss of generality,
assume that the rectangular block of missing values is of size (K− 1)× (K− 1). Furthermore, in each
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border, X(l), l = 1, 2, 3, 4, is defined as a block of information of Z of size K× K, such as appears in
Figure A1.

Figure A1. Block of missing values.

In addition, assume that all l, X(l) are represented by a AR-2D model of the form

X(l)
r,s = φ

(l)
1 X(l)

r−1,s + φ
(l)
2 X(l)

r,s−1 + φ
(l)
3 X(l)

r−1,s−1 + ε
(l)
r,s , l = 1, 2, 3, 4,

where φ
(l)
1 , φ

(l)
2 , and φ

(l)
3 are estimated using the block X(l) for l = 1, 2, 3, 4, respectively. Then, the

prediction model is

X̂(l)
r+i,s+j =

 φ̂
(l)
1 X̂(l)

r+i−1,s+j + φ̂
(l)
2 X̂(l)

r+i,s+j−1 + φ̂
(l)
3 X̂(l)

r+i−1,s+j−1 ; (r + i, s + j) 6∈ A(l),

X(l)
r+i,s+j ; (r + i, s + j) ∈ A(l),

where A(l) is the index set for which X(l) is known and i, j = 1, . . . , K. The prediction algorithm is
the following
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Algorithm 2 Prediction Algorithm.
Input: An image Z with a missing block, and K.

Output: Image Z without missing values.

1: Get a sub-image X of Z of size 3K× 3K, so that the missing data is in the center of X.
2: Get X(l), for l = 1, 2, 3, 4, and reverse the order of the rows in X(3) and the columns in X(4), i.e.,

X(3)
i,j = X(3)

K+1−i,j, and X(4)
i,j = X(4)

i,K+1−j

3: Compute φ̂
(l)
1 , φ̂

(l)
2 and φ̂

(l)
3 for l = 1, 2, 3, 4.

4: Let K2 = K.
5: while K2 > 0. do
6: for j = 1 until j = K− 1 do
7: Compute:

XK+1,K+j = φ̂
(1)
1 XK,K+j + φ̂

(1)
2 XK+1,K+j−1 + φ̂

(1)
3 XK,K+j−1

XK+j,K+1 = φ̂
(2)
1 XK+j−1,K+1 + φ̂

(2)
2 XK+j,K + φ̂

(2)
3 XK+j−1,K

X2K−1,K+j = φ̂
(3)
1 X2K,K+j + φ̂

(3)
2 X2K−1,K+j−1 + φ̂

(3)
3 X2K,K+j−1

XK+j,2K−1 = φ̂
(4)
1 XK+j−1,2K−1 + φ̂

(4)
2 XK+j,2K + φ̂

(4)
3 XK+j−1,2K

. For those points that the estimation is repeated consider the average of both estimations. These

points are obtained for j = 1 and j = K− 1.

end for
8: Put K2 = K2 − 2 and K = K + 1.

end while
9: Replace the NA values of Z by X.

10: Return Z.
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